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Abstract 
Persistent stores support uniform management of data objects regardless of their 
lifetimes and locations.  Such stores typically maintain a self-consistent state even 
after failure of the host computer system.  This property is termed stability, and may 
be achieved using operations called checkpoints.  When objects in the store are 
modified, or modified objects are accessed, dependencies are created between the 
modifying processes and the objects.  Directed graphs may be used to describe such 
dependencies.  For the persistent store to maintain a consistent state, all dependent 
entities must be checkpointed together.  In this paper we show that hardware support 
can assist in the construction of stable stores for which stability is based on 
dependency graphs.  We then describe an implementation of such support in the 
Monads-MM computer. 

1  Introduction 
Persistent systems support mechanisms which allow programs to create and manipulate 

arbitrary data structures which outlive the execution of the program which created them 
[2].  This has many advantages from both a software engineering and an efficiency 
viewpoint.  In particular it removes the necessity for the programmer to flatten data 
structures in order to store them permanently.  In this sense a persistent system provides an 
alternative to a conventional file system for the storage of permanent data.  This 
alternative is far more flexible in that both the data and its interrelationships can be stored 
in their original form.  In order to achieve this a uniform storage abstraction is required.  
Such an abstraction is often called a persistent store.  A persistent store supports 
mechanisms for the storage and retrieval of objects and their interrelationships in a 
uniform manner regardless of their lifetime. 

Persistent stores thus abstract over the distinction between primary and secondary 
storage.  The state of the store at any instant is a combination of the contents of the 
volatile data held in main memory (RAM) and the more stable data held in secondary 
memory (disk).  When a system unexpectedly shuts down, for instance as a result of 
hardware failure or loss of power, the contents of main memory are typically lost.  As a 
result of such failures the data stored in secondary memory may be inconsistent or 
unreachable.  Cockshott [5]  and later Brown [3]  proposed that the abstraction over 
storage should include transparent recovery from such store failures so that the store 
contents are guaranteed to be consistent even after unexpected store failure.  Such stores 



 

are said to be stable, and move between stable states through a sequence of operations 
called checkpoints. 

In section 2 of this paper we examine techniques used in the implementation of stable 
stores and introduce the concept of object level checkpoints.  In section 3 we show that 
such checkpoints must consider logical relationships between objects or associations [11] , 
and describe a scheme for expressing associations based on directed graphs.  We then 
show in section 4 how appropriate hardware support facilitates the implementation of 
stable stores based on this scheme and introduce issues related to multiprocessor 
architectures.  Finally in section 5 we describe the implementation of such hardware 
support in the latest generation of the Monads architecture. 

2  Implementation of stability 
A persistent store is said to be stable if it automatically recovers to a consistent state 

after a failure which has prevented orderly system shutdown.  Techniques which achieve 
stability are typically based on the use of operations called checkpoints which commit all 
recent modifications to stable secondary storage.  The act of checkpointing a store in 
effect flushes all modified data currently held in main memory to disk, and creates a 
snapshot of the store at that moment.  Processing usually ceases on the store during such a 
checkpoint operation. 

Between checkpoint operations on a store, the state of the store is represented by the 
contents of disk plus the contents of modified data held in main memory.  If it could be 
guaranteed that the contents of disk were never modified between checkpoints, and that 
the checkpoint operation itself was atomic, then the contents of disk would always 
represent a stable state of the store.  In fact, virtual memory management requires that 
from time to time main memory pages are re-assigned.  Pages containing unmodified data 
may be safely re-used without disk access.  Modified data, however, must firstly be saved 
before the page(s) containing the data can be re-used.  This is typically achieved by 
flushing the entire page contents to disk.  Writing such a page back to its original location 
on disk potentially leads to the disk representation of the store being inconsistent and 
therefore unstable.  Shadow paging [12]  is a technique that allows modified page discard 
without causing an inconsistent disk version of the store.  The atomicity of checkpoint 
operations may be guaranteed using Challis' algorithm [4] .  In the following discussion 
the term object is used to describe an arbitrarily large unit of logically related data. 

2.1  Shadow paging 
This technique maintains two forms of data which has been modified between 

checkpoint operations; the stable data as it existed at the last checkpoint (shadow data) and 
the latest version of the data (current version data).  The scheme may be implemented for 
individual objects, but is more typically applied at the virtual page level.  In the usual 
paged store, implementation of shadowing at the virtual page level minimises 
fragmentation by allowing more than one object to reside in the same page, and improves 
the efficiency of shadowing for objects that span multiple pages. 

Shadow paging may be implemented using either before-look or after-look strategies.  
The before-look strategy takes an on-disk shadow copy of a page prior to its modification 
and allows discard of the current version page to the original page disk location.  A 
checkpoint operation flushes modified main memory pages to their original locations on 
disk and causes the return of disk pages containing shadow copies to the pool of free disk 
space.  Recovery from store failure involves copying shadow versions of pages onto their 



 

original disk locations.  This strategy has the advantage that it maintains the physical 
location of data on disk, and was implemented in Brown's stable store [3]. 

The after-look strategy allocates a new disk page for storage of the current version, and 
retains the previous unmodified version in its original location as a shadow copy.  In effect 
the disk pages existing immediately after a checkpoint form shadow pages until the next 
checkpoint.  A checkpoint operation flushes modified main memory pages to the current 
version disk locations and returns the disk space occupied by shadow copies to the pool of 
free disk pages.  Since the data structures describing the disk are also stabilised at a 
checkpoint, recovery from store failure is automatic.  This strategy has the advantage that 
it requires one less write operation for modified pages between each checkpoint but results 
in the random distribution of data on disk.  It has been implemented for Monads [14] and 
Casper [17]. 

Both strategies require atomicity of checkpoint operations.  Since writing to disk is a 
sequential operation, such atomicity can only be an abstraction.  This is achieved by 
viewing the store as a structure accessible from a single point or root, and changing that 
root according to Challis' algorithm as the last step in a checkpoint operation. 

2.2  Challis' algorithm 
Challis proposed that atomicity could be achieved by starting and ending a root page 

with a timestamp.  Such timestamps are never the same for consecutive versions of a root 
page.  If a root-page write operation is successful, the disk version of the page will have 
identical timestamps; if it fails then the first timestamp will differ from the last, which will 
remain at the value prior to the failed write operation. 

By maintaining two root pages in well known locations on disk, ensuring that there is 
always one valid root block and using a system of timestamps which allow determination 
of the most recent correct root page, it becomes possible to atomically commit a 
checkpoint operation.  Further, because the root page either contains or points to structures 
which describe the store, it is possible after failure to determine which root points to the 
most recent stable state and to access that state. 

The problem with the stability scheme as described is that the entire store must be 
checkpointed at the same time.  Since user processing must either cease or be severely 
restricted during such an operation, a checkpoint involves 'stopping the world'.  In a multi-
user store involving multiple nodes this would result in unacceptable degradation of 
performance.  Accordingly, systems have been developed which checkpoint parts of the 
store independently [8, 17].  The stable state of such a store is the collection of these stable 
parts. 

While checkpointing parts of the store independently has a positive effect on 
performance, it creates the possibility of logical inconsistencies between data.  Modified 
data from one object may influence the way a process modifies data in some other object.  
As a result the two objects have a dependency relationship which must be considered 
when checkpointing either of them.  Such dependencies have been described using sets of 
pages in Casper, and more recently using directed graphs of entities [9].  Other work based 
on message-passing research is currently investigating the maintenance of causality 
relationships to allow reconstruction of consistent states (which are not necessarily 
recreations of previous states) following failure [16] . 

In the following section we refer to data as being modified if it has been changed or 
created since the last time the object containing the data was checkpointed.  The term 
entity in this discussion refers to an object (as defined for the system) or a process. 



 

3  Inter-relationships between system entities 
As processes access data objects in a store, these accesses may result in dependencies 

being created between the processes and the objects.  Such dependencies are established 
as a result of write operations which modify data, and subsequent read operations on such 
modified data.  It is important to note that data objects cannot become inter-dependent 
without processes, and that processes cannot become inter-dependent without data objects.  
It should also be noted that read operations on unmodified data do not create 
dependencies. 

By way of example of the creation of a dependency between objects, consider a motor 
car registration system in which a vehicle cannot have its registration renewed unless it 
has current insurance.  Assume a system consisting of an insurance object, a registration 
object and a number of user-level processes.  If one process updates the insurance object 
to indicate that the insurance on a particular vehicle has been renewed, and another 
process subsequently queries the insurance status of the vehicle and allows and records the 
vehicle's re-registration, this activity results in a dependency between the involved entities.  
If the registration object were checkpointed independently of the insurance object, a 
failure could result in the store recording that the vehicle was registered without being 
insured. 

Ideally dependencies should be established based on knowledge of access to data at the 
basic unit of data reference (eg. byte, word).  In a typical paged store, however, it is overly 
expensive to monitor access behaviour at this level.  The basic unit of transfer of data 
between secondary and primary storage and of virtual to physical address mapping is the 
virtual page.  Accordingly a virtual memory system is required to maintain access 
behaviour knowledge at, and hardware support is optimised to, the virtual page level.  It is 
prudent to use the same granularity in determining inter-object dependencies.  Such 
dependencies, while detected at the virtual page level, result in checkpoint dependencies at 
the large object level.  Thus dependency information is maintained at the large object level 
for the purpose of controlling checkpoint operations.  The dependency between such 
objects may be represented using a set called an association [11]. 

3.1  Describing dependencies using associations 
As defined for Casper, associations are sets of dependent entities [11] .  After it has 

been checkpointed, an entity belongs to an association of which it is the only member.  
Over time entities interact with other entities causing their respective associations to 
merge.  To ensure logical consistency it is necessary to checkpoint all members of an 
association together in an atomic operation. 

If such a checkpoint operation fails, or a system failure occurs, all members of an 
association roll-back by reverting to their last stable states.  The use of associations 
guarantees that such reversion results in entities with no inconsistent inter-relationships.  It 
is apparent, however, that the use of a single structure to describe both the checkpoint and 
the roll-back relationships between entities often results in unnecessarily large checkpoint 
and roll-back operations.  Moreover checkpoint operations are expensive and roll-back 
operations may result in unnecessary loss of data modifications.  In the motor car 
registration example, for instance, it is not really necessary to checkpoint the registration 
object when the insurance object is checkpointed, but it is necessary to checkpoint the 
insurance object with the registration object.  Accordingly it should not be necessary to 
roll-back the insurance object because of a failure resulting in the roll-back of the 
registration object.  Such a situation may occur if the insurance and registration objects 
were stored on different nodes in a distributed store. 



 

The use of directed graphs has been shown to minimise the extent of checkpoint and 
roll-back operations. 

3.2  Describing dependencies using directed graphs 
Using directed graphs it is possible to separately represent the checkpoint and roll-back 

dependencies between entities [9].  Graphs are created in a similar way to associations, 
however different graphs are traversed depending on the operation being performed.  The 
→ edge is used to specify the dependency between two entities.  E1 → E2 means that E1 
depends on E2.  → is transitive, but not symmetric ie. if E1 depends on E2 (E1 → E2) 
then E2 does not necessarily have the same relationship with E1 (¬ E2 → E1).  The 
relationship E1 → E2 is established if E1 reads modified data from E2.  Write operations 
lead to a pair of dependencies; instead of indicating two unilateral arrows (E1 → E2 and 
E2 → E1), the notation E1 ↔ E2 is used.  Note also that the expression E1 → E2 is 
congruent to the expression E2 ← E1. 

While a single graph can be used to describe both checkpoint and roll-back 
dependencies, the edges have different meanings for each purpose.  Thus, in effect, a 
single dependency directed graph represents separate checkpoint and roll-back graphs.  
The relationship between the edges forming a dependency graph and their meanings in 
checkpoint and roll-back graphs are shown in figure 1. 

 

Figure 1.  The relationship between Dependency Graph, Stabilising Graph, and Roll-back Graph. 

As described in section 2, a typical checkpoint operation in a paged persistent store 
results in the flushing to disk of main memory pages containing unstable modified data.  
Similarly dependencies between entities should only be established through accesses 
involving modified data.  In the following section we show how explicit hardware support 
improves the efficiency of such stability-related operations. 

4  Hardware support for stability 
We have earlier argued the benefits of support for dual object sizes [7] providing both 

small objects corresponding to the logical units of data manipulated by programs 
(structures, etc) and paged large objects comprising collections of logically related small 
objects. 

In this discussion we assume that either: 

• the object store supports both small and large objects as described above, 
with stability being implemented at the large object level, or 

• the object store supports a single paged object type. 
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To enable implementation of the checkpoint operation for such a store it is necessary to 
be able to detect: 

(1) which main memory pages have been modified by some process, 

(2) which main memory pages have been accessed in this time-slice by the 
currently executing process, and 

(3) which main memory pages have been modified in this time-slice by the 
currently executing process. 

The need for these abilities, and features which provide support for them are discussed 
in the following sections. 

4.1  Identification of modified main memory pages 
This requirement should not be confused with the ability to identify dirty pages which 

is essential to virtual memory management.  Conventional architectures typically provide 
that ability through the implementation of a dirty bit in their address translation unit 
(ATU).  On page discard the dirty bit is queried and accordingly the page-frame is 
immediately re-allocated if clean, or is flushed prior to re-allocation.  Such dirty bits are 
used in exactly the same way for management of the proposed store. 

The proposed modified ATU bit is used to indicate that the contents of this page frame 
have been modified by some process since the object containing the page was last 
checkpointed.  As described in section 3, subsequent access by another process to such a 
page creates a dependency situation involving the object containing the page, and the 
modifying and accessing processes.  The modified bits for the pages of an object are, of 
course, cleared when the object is checkpointed. 

Implementation of stability without this bit involves using the dirty bit for two 
purposes: 

(1) for virtual memory page discard decisions, and 

(2) to detect subsequent accesses to modified pages. 

This is inefficient because a dirty page which is discarded as part of virtual memory 
management and later retrieved for read access would need to be loaded with the dirty bit 
set.  As a result the page would be flushed again on its next discard or when its object was 
checkpointed.  It is recognised that the modified bit duplicates information available from 
the shadow paging data structures; however these data structures are typically stored in 
main memory, and speed is of the essence given that the modified bit is checked on every 
memory access.  It is thus necessary that separate dirty and modified bits are implemented 
in the ATU. 

The implementation of the modified bit requires that the virtual memory page table(s) 
used to locate pages for loading into main memory must be extended to indicate whether 
non-resident pages have been modified since the last checkpoint.  The page table is used 
to retrieve pages, and this extra information is used to appropriately set the modified bit 
when the page is mapped in to the ATU.  The ATU dirty bit for the page is not set, 
ensuring that the page may be later discarded without being flushed to disk (unless of 
course it is subsequently further modified).  Subject to the same caveat the page will not 
be flushed when its object is next checkpointed. 



 

The features described in the next section serve to improve the efficiency of 
construction of dependency graphs by allowing them to be updated once per process time-
slice. 

4.2  Lazy dependency graph construction 
The building of a dependency graph requires detection of process access to modified 

data and of process modification of object data.  Such events may be detected and if 
necessary recorded either eagerly (i.e. after every access to an object) or lazily.  
Identification of critical accesses at the time of those accesses would cause an 
unacceptable deterioration in system performance. 

The collection of appropriate data during a process' time-slice is proposed, thus 
allowing dependency graphs to be updated at the time of a process switch.  Accordingly it 
is necessary to record the accesses and modifications performed by a process during its 
latest activation. 

4.2.1  Identification of accessed main memory pages 

Pages may remain in main memory for a period encompassing many process 
activations.  The m_accessed bit maintained by the ATU allows detection of process 
access to modified object data during the current time-slice.  This bit is set for a page if the 
page is accessed while the modified bit for the page is set.  Dependencies between a 
process and the objects containing pages with the m_accessed bit set are represented by 
the addition of appropriate → edges to the dependency graph at the conclusion of the 
process' period of activation.  All m_accessed bits must be clear at the commencement of a 
process time-slice; this may be achieved in a single operation using appropriate hardware. 

4.2.2  Identification of written main memory pages 

The inclusion of a written bit maintained by the ATU allows detection of object data 
modifications made by the current process.  This bit is distinct from the modified bit 
described in section 4.1 because it describes the modification behaviour of the current 
process only rather than the status of the virtual page itself. 

The written bit is set together with the modified and dirty bits, but is cleared as part of 
the dependency graph update at the conclusion of the process time-slice.  In contrast the 
modified bit is cleared at the next object checkpoint and the dirty bit is cleared when the 
page is flushed to disk.  Pages with the written bit set cause the inclusion of an appropriate 
↔ dependency graph edge.  The operation of the ATU with respect to the described status 
bits is shown in figure 2. 

 



 

Figure 2.  Effect of operations on page status bits. 

In the following section we discuss the implications of m_accessed and written bits 
when used in multiprocessor machines. 

4.3  Multiprocessor architectures 
In a multiprocessor machine multiple processes are able to execute in parallel.  It is 

thus necessary to maintain m_accessed and written bits for a page frame on a per process 
(and thus per processor) basis.  Thus for any page frame there is an array of m_accessed 
bits and an array of written bits.  One element of each of these arrays represents each 
attached processor. 

Multiprocessor computers increase the complexity of the described operations because 
they introduce the aspect of causal ordering of events.  Such ordering is important because 
of: 

(1) its impact on the discard of pages during virtual memory operation and 

(2) the impact of a checkpoint involving one process on other executing 
processes. 

4.3.1  Parallel page discard 

Lazy dependency graph construction, as described, is dependent on the important 
condition that no page is discarded while its m_accessed or written bits are set.  For a 
single processor machine this is not an issue because page discard occurs synchronously 
with process activation.  A multi-processor computer allows several processes to execute 
simultaneously, and thus page discard may occur in parallel with process activation. 

When a page is selected for discard, the arrays of m_accessed and written bits for the 
page are scanned, and the process executing on any processor for which either bit is set is 
forced to end its current time-slice (i.e. there is a re-schedule on the processor).  This 
results in merging of the dependency graphs containing the processes.  To minimise this 
imposition on executing processes, the discard algorithm attempts to select pages for 
which neither bit is set.  The number of such pages is minimised by ensuring that 
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processes checkpoint regularly; the effect of this is similar to that of the Unix sync 
operation [13]. 

4.3.2  Parallel checkpoint and process execution 

In a multiprocessor a checkpoint on an object may occur in parallel with execution of 
other processes.  This raises the possibility of an object being checkpointed whilst it is 
being accessed by a process active on another processor.  Such a process must be forced to 
suspend, causing its dependency graph to be updated.  This may result in the process being 
checkpointed. 

The authors are currently investigating multiprocessor and distribution aspects of 
support for stability and will report their findings in a later paper. 

5  An implementation example 
This section describes the addition of the above-mentioned hardware support to the 

Monads-MM architecture [15].  The Monads-MM supports a network of nodes each of 
which may comprise multiple processors.  Each processor generates 128 bit virtual 
addresses which reference a persistent global distributed shared memory (DSM). 

Each node has a single ATU which translates virtual addresses to physical addresses 
for all of the processors attached to that node.  The global address space is structured to 
assist in determining the physical location of data stored in it [6].  The store provides 
explicit support for small and large objects called segments and modules respectively, with 
segments being positioned orthogonally to page boundaries and logically related segments 
being collected to form paged modules [7].  Thus many segments may exist within a 
single virtual page or a segment may span several virtual pages.  Modules are self-
describing; each module contains internal data describing its own location on disk.  As a 
result there is no need for a central DSM page table. 

A two level capability-based protection scheme controls access to the interface 
procedures of modules and addressing of the data stored in segments [10].  A set of 
capability registers is provided for the purpose of addressing segments.  All addressing is 
of the form <capability register>+<offset>, providing dynamic bounds and access-rights 
checked access.  Segment capabilities define the identity of the encompassing module; as 
a result the module is identified with every data access, facilitating collection of 
dependency information. 

The ATU itself is organised as an inverted hash table [1].  To provide the support 
described above each cell of this table must be extended to provide modified, m_accessed 
and written bits for the appropriate page frame in addition to the dirty bit already 
provided.  In the Monads-MM implementation we have taken advantage of the machine's 
architecture by maintaining m_accessed and written information with each processor 
rather than at the ATU.  Moreover such information is maintained at the module level and 
is thus of the granularity required by the dependency graph. 

5.1  Maintenance of access status 
Examination of the information content of the proposed modified, m_accessed and 

written bits reveals that the former conveys page-level information on a between 
checkpoints basis and the latter two are used to construct module-level information for the 
current time-slice.  Accordingly, and since the appropriate module is identified by every 
access, it is possible to maintain a cache of module status information with each processor.  



 

This is called the Process Active Object Cache (PAOC).  Data is collected in the PAOC 
during processing using information provided by the ATU. 

A key field attached to each capability register is loaded the first time that register is 
used in a time-slice.  This field points to the appropriate PAOC cell and is used for 
subsequent accesses to the cache during this process activation.  Since capability registers 
are used to address segments, multiple PAOC key fields may point to any single cache 
cell.  A comparator is used when the PAOC key is invalid to detect whether the required 
cache entry already exists.  If the appropriate entry does exist the PAOC key is set to point 
to it; if it does not exist a cache entry is created and the key is set. 

The contents of the PAOC are used at the completion of a process time-slice to 
appropriately update dependency information.  Finally the cache cells are cleared and 
capability register key fields are marked invalid in preparation for the next process.  This 
structure is shown in figure 3. 
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Figure 3.  Cache of process related status correlated with module name. 

Maintenance of the per-processor module access information separately from the ATU 
has the advantages that: 

• m_accessed and written information is automatically collated at the required 
module-level granularity during system operation, reducing the cost of the 
dependency graph update performed at the conclusion of a process' time-
slice, 

• less hardware is required because m_accessed and written information for 
each attached processor is not maintained for every main memory page frame 
and 

• it facilitates clearing of the status information at each process switch 
(compared with selectively clearing ATU bits in a multiprocessor machine). 



 

5.2  Maintenance of page modification status 
The provision of a modified bit for each ATU cell allows identification of virtual pages 

containing data modified since the last checkpoint operation.  Information stored by the 
ATU is ordinarily lost when the page is discarded during virtual memory operation.  As 
described in section 4.1, this situation requires the extension of the virtual memory page 
table to include modified information.  When the object containing a page is checkpointed, 
the modified bit for the page must be cleared, involving a scan of all page table entries for 
the object. 

Monads modules are self-defining, with each module storing its own page table.  We 
propose that, rather than extending the existing page table entries, an extra bit list is added 
to the internal data maintained by every module.  Each bit would logically form part of a 
page table entry and would store that page's modified status.  The bit list would be 
checked every time a page from the module was loaded into main memory, and would be 
updated with every page discard.  Segregation of the modified bits in this way facilitates 
clearing after a checkpoint operation on the module. 

6  Conclusion 
Stability of persistent object stores may be achieved by checkpointing dependent 

entities together.  Dependencies between entities are created during processing of the data 
held in the store, and may be recorded using directed graphs.  It has been shown that 
different dependencies are created by read and write access to data.  Separately recording 
these dependencies allows a reduction in the extent of checkpoint and roll-back 
operations. 

Maintaining dependency information of read/write granularity appears to require a 
dependency graph update immediately after every store access.  Such expensive updates 
may be avoided if the ATU maintains extra status information about main memory 
accesses, allowing a single dependency graph update at the conclusion of each process 
activation. 

Structuring the store to support large objects comprising collections of logically related 
small objects, and then appropriately naming such large objects, allows the maintenance of 
process access history at the large object level.  This has two significant advantages.  
Firstly it reduces the quantity of access history data stored and thus the hardware required 
for such storage.  Secondly it removes the necessity to scan the page-related data 
maintained in the ATU by dynamically collecting an object-level history during process 
execution for use when updating dependency graphs. 
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